Posts tagged "caixa-preta"

Sociólogos de robôs

14/08/2019 Posted by Pessoas, Tecnologia, Tendências 0 thoughts on “Sociólogos de robôs”

Sistemas de Inteligência Artificial precisam de mais profissionais de humanas em seu desenvolvimento.

Ferramentas de inteligência artificial vão aos poucos conquistando seu espaço no cotidiano das pessoas. Estão disfarçadas em serviços cada vez mais populares, como os oferecidos por aplicativos de transporte, paquera, trânsito e publicidade. Ou bem visíveis, como as assistentes incorporadas em produtos, serviços ou plataformas. Embora nem todas mereçam o rótulo de inteligentes – vide os limitados robôs do tipo “posso ajudar”, em sites diversos -, várias alcançaram níveis bem sofisticados de operação, como as já famosas Siri, Cortana e Alexa.

Sistemas de inteligência artificial são sustentados por algoritmos e dados. E, como já mostramos aqui e ali, ambos trazem o risco de distorção.  As máquinas com capacidade de aprender o fazem a partir de informações recolhidas previamente, das quais sairão os parâmetros para predições, ações e reações. Mas, por mais “independentes”, esses dispositivos são programados e alimentados por humanos e seus dados. Eles carregam vieses pessoais, visões de mundo e distorções. Como resultado, o risco de sistemas preconceituosos ou discriminatórios. Um exemplo, ligado às já citadas assistentes virtuais Siri e Alexa, mostra a reprodução de um padrão sexista.

“Há evidências crescentes de que a Inteligência Artificial pode exacerbar a desigualdade, perpetuar a discriminação e causar danos”

O alerta é de Mona Sloane, pesquisadora do Instituto para o Conhecimento Público, da Universidade de Nova York. Em conjunto com Emanuel Mosso, da City University, eles acabaram de publicar artigo defendendo a inclusão de profissionais das áreas sociais no desenvolvimento de projetos de IA, como forma de reduzir o potencial de dano e ampliar seus benefícios à sociedade. Em resumo, mais “gente de humanas”, com destaque específico para os sociólogos. Eles listam três habilidades específicas das áreas de ciências sociais:

·  As ciências sociais têm uma extensa pesquisa e conhecimento sobre o entendimento das categorias identificadas socialmente, assim como sua organização e estratificação na sociedade. A construção história e o usos de termos como “raça”, e suas implicações, fazem parte do dia-a-dia do sociólogo, mas não dos engenheiros.

·  A análise quantitativa de dados, base de sistemas de machine learning, por exemplo, seriam beneficiadas com os protocolos já em uso na pesquisa social. Seu objetivo é exatamente identificar padrões e intenções que levaram à coleta dos dados, evitando armadilhas.

·  A sociologia exige reflexão para os métodos de análise qualitativa de dados, com um foco bem claro na percepção da influencia do observador sobre o ambiente pesquisado. Algoritmos buscam exatamente a capacidade de transcender a analise quantitativa e chegar à algum ponto próximo à subjetividade. Um espaço em que os pesquisadores da área de sociologia conhecem bem.

O artigo reconhece o esforço dos engenheiros em incorporar nos algoritmos valores alinhados com os da humanidade, mas que é excepcionalmente difícil definir e codificar valores tão fluidos e contextualizados como os ligados às pessoas.

Algoritmos contra o preconceito

12/07/2019 Posted by Pessoas, Tendências 2 thoughts on “Algoritmos contra o preconceito”

Universidade desenvolve ferramenta para reduzir risco de resultados discriminatórios em sistemas de Inteligência Artificial.

 

Um dos maiores temores em relação à disseminação da Inteligência Artificial é a limitação de acesso ao processo de aprendizagem – cada vez mais complexo, como nos cérebros humanos – e consequente incerteza em relação aos resultados. Com algoritmos exponencialmente sofisticados, como os usados nas máquinas de deep learning e suas redes neurais, é muitas vezes impossível acompanhar o “raciocínio” seguido até determinada solução. Um desafio ainda maior devido à acelerada adoção de sistemas de machine learning nas áreas de segurança, educação, finanças e negócios, entre outras. Enquanto a maioria dos softwares são codificados com lógica programável, ou seja, respondem conforme os parâmetros determinados por seus programadores, não é possível saber exatamente qual é o processo pelo qual alguns algoritmos de IA passam até que cheguem às suas conclusões. São os sistemas black box, que já falamos aqui.

As máquinas com capacidade de aprender o fazem a partir de informações recolhidas previamente, das quais sairão os parâmetros para predições, ações e reações. Mas, por mais “independentes”, esses dispositivos são programados e alimentados por humanos e seus dados. Eles carregam vieses pessoais, visões de mundo e distorções. Como resultado, o risco de sistemas preconceituosos ou discriminatórios.

Um famoso estudo de pesquisadores das universidades de Virginia e Washington mostrou como sistemas de identificação de imagens rotularam como sendo de mulheres imagens de homens na cozinha. Afetadas pela tendência registrada em seus bancos de dados, as máquinas reproduziram um estereótipo comum entre os humanos. Situações semelhantes já foram encontradas em programas para identificar suspeitos, por meio de reconhecimento facial, e outros.

Pesquisadores da Penn State e Columbia University acabam de apresentar uma ferramenta com o objetivo de identificar discriminação indesejável nos sistemas de inteligência artificial.

“Sistemas como este são treinados por uma imensa quantidade de dados, mas se os dados são enviesados, eles afetarão o resultado”

Vasant Honavar, professor da Penn State, cita como exemplo um algoritmo destinado a identificar os melhores candidatos para uma vaga de emprego, baseado em determinadas habilidades. Mas como os dados trazem uma série histórica em que mais homens foram empregados, no passado, o sistema tem a tendência de também privilegiar os homens em detrimento das mulheres. “Não há nada de errado com os algoritmos, eles fazem o que devem fazer, mas os dados usados aumentam o potencial para recomendações injustas. Se nenhuma mulher foi contratada no passado para determinada posição, é provável que o sistema não recomende mulheres para uma nova vaga no futuro”, completa o professor.

A menos que modificações sejam introduzidas nos algoritmos, como as desenvolvidas pela universidade. Os cientistas testaram o novo método usando diversos tipos de dados disponíveis, como a renda e demografia do censo norte-americano. A ferramenta de inteligência artificial foi capaz de detectar o risco de discriminação atribuído a determinados atributos, como gênero e raça.

Caixinhas de segredos: as máquinas que não conseguimos decifrar

26/04/2019 Posted by Data Science, Tecnologia, Tendências 0 thoughts on “Caixinhas de segredos: as máquinas que não conseguimos decifrar”

Uso de “algoritmos caixa-preta” levantam controvérsia. Devemos usar máquinas que “pensam” sem que saibamos exatamente como?

A ameaça dos computadores insurgentes que renderam à literatura e ao cinema ótimas histórias, todas envolvendo a humanidade posta em risco pela rebeldia de suas criações, não é realidade. Pelo menos ainda.

Mas outra questão envolvendo a Inteligência Artificial (IA) tem provocado um grande dilema: muitos dos sistemas de machine learning, modalidade que abrange as máquinas capazes de aprender, são verdadeiras caixas-pretas. Falamos disso em outro artigo.

Enquanto a maioria dos softwares são codificados com lógica programável, ou seja, respondem conforme os parâmetros determinados por seus programadores, não é possível saber exatamente qual é o processo pelo qual alguns algoritmos de IA passam até que cheguem às suas conclusões.

As convolutional neural networks (redes neurais convolucionais) são um exemplo. Com seus neurônios artificiais conectados de forma a tentar mimetizar a estrutura de um cérebro humano, é difícil acompanhar e “enxergar” o que se dá nelas. Rápidas e complexas, elas complicam a vida de quem quer quer compreendê-las. Resta aos curiosos analisar seus resultados e, por inferência, supor o processo. Daí o motivo de muitos especialistas se posicionarem como contrários ao uso de algoritmos caixa-preta, ou ao menos preocupados com algumas das consequências de seu uso.

Elizabeth Holm, professora de ciência e engenharia de materiais na Universidade Carnegie Mellon, posiciona-se favoravelmente ao uso desses recursos. Primeiramente ela ressalta que, tal qual nesses sistemas, alguns processos do pensamento humano também são insondáveis. Não raro confiamos em resultados de pensamentos que não podemos descrever ou explicar, por exemplo, e que nem por isso são necessariamente ruins ou prejudiciais. Para ela, o que vale para os humanos, nesse caso, deve valer também para a máquina.

Seus argumentos seguem em torno de três regras, estabelecidas por ela. A primeira, a mais simples, determina que se o custo de uma decisão ruim é pequeno e, por sua vez, o valor de uma decisão acertada é alto, vale a pena usar.

No segundo caso, mesmo com custos altos, vale a pena usar essas caixas-pretas quando é a melhor opção para fazer determinado trabalho. Um exemplo são os algoritmos utilizados em carros autônomos, que certamente serão condutores melhores que os humanos, mas que ainda assim, se houver falha em seus processos, podem causar graves acidentes.

A terceira situação em que se justifica o uso dos black box algorithms é quando a máquina é capaz de fazer algo de maneira diferente que os humanos, ou mesmo coisas das quais não somos capazes. Aí a decisão se aproxima da opção entre fazer ou não fazer algo, entre avançar ou não em algum aspecto.

Para Andrew McAfee, especialista em machine learning e automação, impor barreiras regulatórias para o uso de caixas-pretas na IA e exigir altos níveis de interpretabilidade nos sistemas poderia retardar o progresso da tecnologia.

Há, porém, muitos outros que defendem que esse progresso não pode vir a qualquer custo. Se não é possível entender exatamente como o sistemas caixa-preta funcionam e quais parâmetros utilizam, fica mais fácil duvidar deles ou perder a confiança neles.

A IBM, gigante no setor tecnológico, respondeu a essa corrente disponibilizando na nuvem, um serviço que torna visíveis os parâmetros de IA dos sistemas da empresa e permite a detecção de vieses durante seu funcionamento. Dados de um relatório elaborado pelo Institute for Business Value, vinculado à corporação, mostraram que 82% das empresas observadas consideram implementar IA em seus processos, mas delas 60% ainda têm receio quanto a questões de responsabilidade e compliance e 63% não dispõem de recursos humanos e/ou tecnológicos adequados para incorporar a tecnologia de forma confiável.

A ideia é que a ferramenta seja aplicável também a outros modelos, ambientes e sistemas tais como Tensorflow, Watson, AWS SageMaker, AzureMA e SparkML e seja personalizável para sistemas internos das organizações. Ela permite a entrada de dados para complementar ao modelo para diminuir a tendência de viés e mostra o caminho da tomada de decisões enquanto em execução.

Além disso, já inclui parâmetros que atendem a padrões de conformidade e regulação, como é o caso do GDPR (Regulamento Geral sobre a Proteção de Dados, implementado pela União Europeia). A companhia também vai disponibilizar ferramentas open source e materiais que fomentem a colaboração da comunidade tecnológica em torno do assunto.

É fato que a evolução não pára e a IA veio para ficar de vez, e provavelmente questões como essa, de ordem prática e ética, se sucederão. A controvérsia dos algoritmos caixa-preta é uma das bolas da vez.