Algoritmos contra o preconceito

12/07/2019 Posted by Pessoas, Tendências 2 thoughts on “Algoritmos contra o preconceito”

Universidade desenvolve ferramenta para reduzir risco de resultados discriminatórios em sistemas de Inteligência Artificial.

 

Um dos maiores temores em relação à disseminação da Inteligência Artificial é a limitação de acesso ao processo de aprendizagem – cada vez mais complexo, como nos cérebros humanos – e consequente incerteza em relação aos resultados. Com algoritmos exponencialmente sofisticados, como os usados nas máquinas de deep learning e suas redes neurais, é muitas vezes impossível acompanhar o “raciocínio” seguido até determinada solução. Um desafio ainda maior devido à acelerada adoção de sistemas de machine learning nas áreas de segurança, educação, finanças e negócios, entre outras. Enquanto a maioria dos softwares são codificados com lógica programável, ou seja, respondem conforme os parâmetros determinados por seus programadores, não é possível saber exatamente qual é o processo pelo qual alguns algoritmos de IA passam até que cheguem às suas conclusões. São os sistemas black box, que já falamos aqui.

As máquinas com capacidade de aprender o fazem a partir de informações recolhidas previamente, das quais sairão os parâmetros para predições, ações e reações. Mas, por mais “independentes”, esses dispositivos são programados e alimentados por humanos e seus dados. Eles carregam vieses pessoais, visões de mundo e distorções. Como resultado, o risco de sistemas preconceituosos ou discriminatórios.

Um famoso estudo de pesquisadores das universidades de Virginia e Washington mostrou como sistemas de identificação de imagens rotularam como sendo de mulheres imagens de homens na cozinha. Afetadas pela tendência registrada em seus bancos de dados, as máquinas reproduziram um estereótipo comum entre os humanos. Situações semelhantes já foram encontradas em programas para identificar suspeitos, por meio de reconhecimento facial, e outros.

Pesquisadores da Penn State e Columbia University acabam de apresentar uma ferramenta com o objetivo de identificar discriminação indesejável nos sistemas de inteligência artificial.

“Sistemas como este são treinados por uma imensa quantidade de dados, mas se os dados são enviesados, eles afetarão o resultado”

Vasant Honavar, professor da Penn State, cita como exemplo um algoritmo destinado a identificar os melhores candidatos para uma vaga de emprego, baseado em determinadas habilidades. Mas como os dados trazem uma série histórica em que mais homens foram empregados, no passado, o sistema tem a tendência de também privilegiar os homens em detrimento das mulheres. “Não há nada de errado com os algoritmos, eles fazem o que devem fazer, mas os dados usados aumentam o potencial para recomendações injustas. Se nenhuma mulher foi contratada no passado para determinada posição, é provável que o sistema não recomende mulheres para uma nova vaga no futuro”, completa o professor.

A menos que modificações sejam introduzidas nos algoritmos, como as desenvolvidas pela universidade. Os cientistas testaram o novo método usando diversos tipos de dados disponíveis, como a renda e demografia do censo norte-americano. A ferramenta de inteligência artificial foi capaz de detectar o risco de discriminação atribuído a determinados atributos, como gênero e raça.

Tags: , , ,

2 thoughts on “Algoritmos contra o preconceito”

  1. marcelo costa disse:

    o tema é dos mais interessantes e instigantes no que se refere a AI, big data e learn machine. Legislaç~çao européia e brasileira acerca da proteção de dados não aborda tais questões no que se refere às informações a que o usuário tem direito antes de publicizar seus dados. Por isso se tiverem mais links , que aprofundem mais o assunto ou a pesquisa das universidades, seriam muito bem vindos. abs

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *