Respostas rápidas e pensamentos profundos: o futuro do Machine Learning
05/04/2019 Posted by gotodata Data Science, Tecnologia, Tendências 0 thoughts on “Respostas rápidas e pensamentos profundos: o futuro do Machine Learning”Aprendizagem de máquina sobreviveu ao quase esquecimento para voltar ao foco das empresas e cientistas.
 Avanços tecnológicos surpreendentes, robôs, algoritmos complexos, computadores cada vez mais potentes e rápidos: bem-vindos à espantosa década de 1960. O mundo vivia suas revoluções e a inteligência artificial era um trending topic, com quadrinhos, seriados, filmes e livros investindo no tema. Por pouco tempo. A decepção com a falta de resultados concretos levou o assunto ao descrédito e ao esquecimento por um longo período. Foi necessário um duelo épico, mais de 30 anos depois, para as atenções se voltarem novamente para as máquinas pensantes.
Avanços tecnológicos surpreendentes, robôs, algoritmos complexos, computadores cada vez mais potentes e rápidos: bem-vindos à espantosa década de 1960. O mundo vivia suas revoluções e a inteligência artificial era um trending topic, com quadrinhos, seriados, filmes e livros investindo no tema. Por pouco tempo. A decepção com a falta de resultados concretos levou o assunto ao descrédito e ao esquecimento por um longo período. Foi necessário um duelo épico, mais de 30 anos depois, para as atenções se voltarem novamente para as máquinas pensantes.
Em fevereiro de 1996, o então campeão mundial de xadrez Garry Kasparov enfrentou Deep Blue, o supercomputador desenvolvido pela IBM, com 256 coprocessadores e um banco de dados com mais de 700 mil partidas de mestres do jogo. Kasparov perdeu a primeira rodada, recuperando-se ao longo das seguintes e vencendo ao final por 4 x 2. Confira os lances aqui. O evento atraiu atenção mundial e despertou o público para a possibilidade de computadores realmente estarem ganhando novos poderes.
Um ano depois, os dois voltaram-se a se enfrentar para uma revanche. Deep Blue recebera uma atualização completa, mas foi um erro de programação o responsável por seu desempenho surpreendente. Na primeira partida, o hoje famoso “lance 44” do Deep Blue desconcertou o enxadrista russo, que, mesmo vencendo a rodada, perdeu ou empatou todas as seguintes. Documentário de 2014 afirma que um bug no programa levou o computador a tomar uma decisão ilógica.
Deep Blue era um legítimo sistema Machine Learning, capaz de tomar suas decisões e predizer os movimentos do adversário por meio de algoritmos de análise de dados. À época do duelo, os termos Inteligência Artificial e Machine Learning já haviam se tornado distintos. Pesquisadores de Inteligência Artificial focaram abordagens mais lógicas e menos dependentes de algoritmos, enquanto o investimento nas redes neurais, teoria das probabilidades e métodos estatísticos definiu o caminho do Machine Learning.
No início dos anos 2000, com a disseminação da internet, o mundo da Tecnologia da Informação percebe o valor dos sistemas focados na análise de dados e o Machine Learning inicia sua ascensão. Afinal, os dados tornam-se abundantes e é evidente a relação entre a quantidade dessas informações e a capacidade dos sistemas em aprender com elas. Mais dados, melhores resultados.
Um breakthrough definidor, neste período, foi a publicação do artigo “A fast learning algorithm for deep beliefs nets”, em 2006. O algoritmo proposto pelos autores resolvia um dos maiores desafios das redes neurais e, a partir dele, com algumas poucas contribuições, surgiu o que hoje denominamos Deep Learning e as respectivas Deep Neural Networks (DNN).
A empresa de identificação de tendências Gartner aponta que o termo Inteligência Artificial está superexposto, abrangendo uma série de inovações em diferentes estágios de desenvolvimento e com opiniões divergentes. Entretanto, em seu mais recente relatório sobre Machine Learning, faz um alerta específico aos investidores sobre a importância da DNN e suas tecnologias associadas, como ensemble learning e análise preditiva e prescritiva. A questão, apontam seus especialistas, não é o que ela é capaz de fazer e sim qual problema pode ser por ela solucionado.
Atualmente, os sistemas de Machine Learning estão presentes em tecnologias chave para o futuro, como os aparelhos Google Home e Amazon Echo. Pelo crescente investimento, é possível afirmar que esta breve história contada até aqui deve continuar pelas próximas décadas.
 
			    	